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Abstract. The kinetics of single-species annihilation,+ A — 0, is investigated in which
each particle has a fixed velocity which may be either with equal probability, and a finite
diffusivity. In one dimension, the interplay between convection and diffusion leads to a decay
of the density which is proportional to%/4. At long times, the reactants organize into domains

of right- and left-moving particles, with the typical distance between particles in a single domain
growing agr®/4, and the distance between domains growing &&he probability that an arbitrary
particle reacts with itsith neighbour is found to decay as®? for same-velocity pairs and as
n=7/* for +— pairs. These kinetic and spatial exponents and their interrelations are obtained by
scaling arguments. Our predictions are in excellent agreement with humerical simulations.

Single-species diffusion-controlled annihilatiohn,+ A — 0, exhibits classical mean-field
kinetics when the spatial dimensiah> 2, in which the concentration(r) decays as?,

and non-classical dimension-dependent kineticsdox 2 with a slower concentration
decay, c(r) « t~%2 [1-7]. In one dimension, the geometric restriction to nearest-
neighbour interactions leads to relatively large departure from the mean-field kinetics, as
well as a spatial organization of reactants. In this well-studied case, it is known that
c(t) asymptotically decays aéDt)~?, independent of the initial concentration. The
complementary situation of single-species annihilation where the reactants move ballistically
has recently begun to receive attention [8-12]. Perhaps the simplest example is the
deterministict annihilation process, where each particle moves at a constant velocity which
may be eitheHv or —v [8,9]. When the densities of thev and —v particles are equal,

c(t) decays agco/vt)Y/2.

In this letter, we consider single species annihilation when the particle transport is a
superposition of convecticand diffusion—we term this system the stochasti@nnihilation
process (figure 1). Although the concentration decays % when only one of the transport
mechanisms—either convection or diffusion—is operative, the combined transport process
leads to a faster concentration decayrot/# [10]. Our goal is to understand this unusual
decay law and its attendant consequences on the spatial distribution of reactants. While
there has been fragmentary mention of some aspects of this system [7,10], here we give
primarily new results and a self-contained account of the basic phenomena.

To set the stage for our approaches and results in the stochaatinihilation process,
it is first helpful to provide a simple derivation for the decayctf) in the deterministic
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Figure 1. Spacetime evolution of particles in the stochagti@nnihilation process.

+ process. Let us consider a system where particles are placed with concentgaition

a box of sizeL, and denote by(L, r) the time-dependent concentration. Initially, there
are N = ¢oL particles, and the difference between the number of right- and left-moving
particles is of the order AN = |N. — N_| ~ +/N. Eventually, all particles who belong to
the minority-velocity species are annihilated and ths, t = co) ~ AN /L ~ (co/L)Y2.

We assume a scaling form for the concentratiof,, t) ~ (co/L)Y?f(z) with z = L /vt.
According to the above argumenyf(z) — constant in thee — 0 limit. Conversely, in the
short time limit,z — oo, the concentration cannot depend on the box size, softhat
must be proportional te¥/2. Thus we find

c(t) ~ (60)1/2. 1)

vt
As a consequence, the system organizes into right- and left-moving domains whose size is
of the order ofvr.

In the diffusive case, either one particle or no particles survive the annihilation process in
a finite box, depending on the parity of the initial number of particles. Following the above
line of reasoning, we may write the scaling ansatz, r) ~ L~ f(z) with z = L/«/Dt.
Here the relevant time-dependent length scakgBx. In the limitz — 0, the concentration
is independent of., thereby implyingf (z) ~ z. Therefore the time-dependent concentration

is given by
1 \2
c«o~(5) - @

The crucial new feature in the stochasticannihilation process is that particles with
the same velocity can mutually annihilate because of their interaction which is driven by
diffusion (figure 1). A useful way to determine the decay in this process is to consider
separately the role of convection and diffusion on the kinetics. Because of the convection,
particles organize into right- and left-moving domains as outlined above. Inside each
domain, however, diffusive annihilation between same-velocity particles takes place. We
assume that the diffusive annihilation mechanism leads to an effective time-dependent
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‘initial’ concentration, co(r) ~ (Dt)~2, which plays the role ofq in equation (1). Thus

we obtain
1 1/4
o~ (M) ~ ©)

Intriguingly, the concentration in the stochasticannihilation process is predicted to decay
ast~%4 even thoughe(r) decays as /2 if either diffusion only or convection only is the
transport mechanism.

An alternative method to determine the decay law, which provides additional insight
into the relative effects of diffusion and convection, is dimensional analysis. If the particle
diffusion coefficient isD, then the stochastiet process is fully characterized by the
initial concentrationcy, the velocityv, and D. From these parameters, the only variable
combinations with the dimensions of concentration @yel/vt, and ¥+/Dt. On physical
grounds, we anticipate that these three concentration scales should enter multiplicatively
so that the time-dependent concentration can be expressed in a conventional scaling form.
Accordingly, we write the time-dependent concentration in the form

1 o 1 1-p—0o
c(t) ~ (co)’ <vt> (m) 4)

in which the dimension of the right-hand side is manifestly a concentration. The exponents
p ando can be now determined by requiring that the above expressioa(fpmatches

with: (a) the diffusion-controlled behaviou(r) — (D#)~Y/? for t < 7, ~ D/v?, which is

the characteristic time below which the drift can be ignored for a particle which undergoes
biased diffusion; and (b) the ballistically-controlled behavieGr) — (co/vt)Y? when

t < 1p 1/(Dc§), which is the time for adjacent particles to meet by diffusion. Thus
by matching equation (4) witl{Dr)~¥? at r,, one obtainsp = 0, and then matching
equation (4) with(co/vt)¥? at 1p giveso = 1/2. This then reproduces equation (3).

To test this decay law, we performed Monte Carlo simulations using the following
realization of the reaction process. Initially all sites are occupied with eitheroa a —
particle with equal probabilities. These signs, which indicate the velocity direction of each
particle, remain fixed during the particle lifetime. A simulation step consists of picking a
particle at random and moving it a single lattice site in the direction of its velocity. If the
target site is occupied, then both particles are removed from the system. Time is updated
by the inverse of the number of particles. The simulation was carried upttiraé steps
on a periodic chain of F0sites and an average over®l@alizations was performed. The
data forc(z) is strikingly linear over a substantial time range on a double logarithmic scale
(figure 2). The local two-point slopes of the data in the time range<10 < 5 x 10* give
an exponent value of.®45. We interpret the constancy of these data as evidence that the
actual value of the exponent ig48 It is worth noting that a P&danalysis of the exact
short-time power series gives an estimate for the decay exponent of approximately 0.72
[13]. This provides a rough estimate for the magnitude of the variation of the effective
exponent between the early time and asymptotic regimes.

Having established the decay exponent numerically, it is of interest to consider the
consequences of this unusual decay law on the spatial distribution of reactants. In particular,
sincec(r) decays as~¥4, one might expect that the average separation between nearest-
neighbour particles grows a$/4. However, if there remains any vestige of the domain
organization that is associated with the determinigtiprocess, then more than one length
scale may be needed to characterize this spatial distribution. Such multiscale behaviour
has been observed previously in diffusive two-species annihilation [14] and the associated
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Figure 2. Simulation data for the concentratio® {j against time on a double logarithmic scale.
A line of slope—3/4 is shown for reference.

consequences lead to new insights about the system. To investigate possible multiscale
behaviour in the stochasti¢: annihilation process, we introduce the following distance
scales (figure 3):

(X (D)) ~ 2" (X (@) ~ "
(x_ () ~ 1" (Xdom() ) ~ t"m )

which are defined to be, respectively, the average distance between neighbouring same-
velocity pairs,+— pairs, —+ pairs, and the average length of a domain of same velocity
particles.

X++ X+— X-—+
P _—— =
+ + + + + - - + 4+ ++4+ - + + - -
B ]
X dom

Figure 3. Definition of the basic distance scales that characterize the spatial organization in the
stochastict annihilation process.

Our Monte Carlo data for these length scales exhibit considerable curvature on a double
logarithmic scale (figure 4). Thus to estimate the asymptotic behaviour, we studied the
systematic variation of the slopes of linear least-squares fits as the data at the earliest
times are progressively eliminated. The effective exponents obtained in this manner vary
considerably; for example, fofx, , (¢)), the effective exponent systematically increases,
but at a progressively slower rate, from 0.699 to 0.734. Together with relatively strong
numerical evidence that the concentration decays #$, we conclude that the actual value
of v, is 3/4. This accords with the expectation th@at,, (z)) should scale as /k(r).

Similar finite-time corrections occur in the exponent estimates for the remaining length
scales defined above. For these cases, the effective exponent values are all increasing as
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Figure 4. Simulation data for the basic interparticle distances; (1)) ~ "++ (O), (x4_ (1)) ~
t'= (A), (x—4(2)) ~ "=+ (O), and (xdom(?)) ~ r"dom (V). Lines of slopes B4 and 1 are also
shown for reference.

short-time data are systematically deleted and it appearsthav_., andvgeny, are all very

close to 1, asymptotically. That is, the corresponding lengths are governed by the ballistic

particle motion, but again with considerable finite-time corrections. The cabe ofr)) is

especially problematic, as the effective exponent changes from approxima6lyo0Q93

over the time range covered by our simulation. Evidently, more extensive simulation would

be needed to determine the asymptotic exponent values unambiguously by simulation alone.
A new useful way to characterize the spatial range of bimolecular reactions is the

collision probability, P(n), defined as the probability that the reaction partner of a given

particle is itsnth neighbour. Eventually, every particle reacts with some collision partner

in one dimension and the distribution of the distances between partners provides a measure

of the reaction ‘efficiency’. In the deterministit: process, for example, this probability

can be obtained analytically [8, 9, 15]. Let us denote the velocity ofitheneighbour by

v, = £1, and the local velocity sum by, = > "_,v;. A right-moving particle initially

at the origin reacts with it$2n + 1)th-neighbour if (a)s; > 0 for/ =0,1,...,2n, and

(b) S2,.1 = 0. This quantity is precisely the same as the first-passage probability for a

random walk which starts at the origin to return to the origin for the first time after 2

steps. Because of this equivalence to an exactly soluble first-passage problem [16], one has

P(2n) =0 andP(2n + 1) = 272 1(2n)! /n!(n + 1)! In the limit n — oo, the probability

that a given particle collides with itsth-neighbour is given by

P(n) x n=%2, (6)

Motivated by this power-law dependence, we assume, in generalPthat~ n~7. The
exponenty can be related to other fundamental exponents of reaction processes, namely,
the concentration decay exponentdefined byc(r) ~ =%, and the correlation exponefit
defined byz(r) ~ t#. Here&(¢) refers to the distance over ‘information’ about the reactants
spread. In a time, only particles within a domain of linear sizgr) are eligible to react
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and thus the surviving fraction, or concentration, is

c(t) ~ dn P(n) ~ dnn=" ~ PA=1), ©)
H0) £0)
Consequently, we find the exponent relation
y =1+a/B. ®)

For the deterministict processa = 1/2 andg = 1 [8,9], and the exacyy = 3/2 of
equation (6) is recovered. As an illustration, consider, for example, single-species diffusion-
limited annihilation. The decay and correlation exponentsatel/2 andg = 1/2, leading

toy = 2 from equation (8). Preliminary simulations appear to confirm this result. Similarly,
for two-species annihilatioryy is now equal to 14 while 8 remains 1/2 so that = 3/2.

Let us now consider the behaviour of the collision probability in the stochaistic
annihilation process. In this case, the existence of two length scales in the system suggests
that it is necessary to make a distinction between reaction events that involve particles
of the same and of different velocities. We therefore define a ballistic correlation scale
E,_(t) ~ tP+~, with B,_ = 1, which is associated with-— collisions, i.e. annihilation
events between opposite velocity particles. Invoking the scaling relation equation (8), we
thus find P,_(I) ~ (7"~ with y,_ = 7/4. Similarly, there is a diffusive length scale
£..(t) ~ tP++, with B, = 1/2, corresponding to annihilation events between same-velocity
particles. In this case, equation (8) gives, = 5/2. To summarize, we obtain

P(n)~ Py_(n) ~n~¥* Pii(n) = P__(n) ~n2 )

This behaviour is consistent with our Monte Carlo simulation data (figure 5). Notice that
over large distances, annihilation between opposite velocity particles dominates, as one
would naively expect.

Our results can also be generalized to arbitrary spatial dimembierl. In this case,
it is necessary to ascribe a finite, non-zero radtu® the particles so that there is a finite
collision cross section for particles to actually meet. Let us consider the anisotropic system
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Figure 5. Simulation data forP,_(n) (O) and P;,(n) () on a double logarithmic scale.
Lines of slopes-7/4 and—5/2 are drawn as guides to the eye.
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in which particles undergo isotropic Brownian motion with diffusivity, and a drift along
the x axis only, with the velocity taking on the valuevx with equal probability. In the
ballistic limit (D = 0), the concentration decays @%o/R?~1vt (since the process is quasi-
one-dimensional, the=*2 decay of the true one-dimensional system is still obeyed). In
contrast, for diffusion-controlled annihilatiom & 0), the concentration decays @3r) /2

for d < 2, and as(R?*?Dt)~! for d > 2 (with logarithmic corrections at the critical
dimensiond = 2) [7]. Repeating the analysis detailed previously for the one-dimensional
case in the derivation of equation (3) from equation (1) and (2), we find the concentration
decay

(R pd y2)=Y/4 (~@+2/4 d<?2
c@®)~{ (RDv) V2t [InDi/RH]? d=2 (10)
(R¥=3py)y~ Y271 d>2.

The combined diffusion and ballistic transport does not change the mean-field nature of the
annihilation kinetics wher > 2 and the classical™! decay is recovered. For sufficiently
low spatial dimension, however, the non-classical behaviour arises in which the decay
exponentr = (d 4+ 2)/4. Thus in low spatial dimensions, the interplay between convection
and diffusion provides more effective mixing than diffusion or drift alone, and leads to a
larger decay exponent thani = d/2 andapa = 1/2 which arise when only one transport
mechanism is operative.

In summary, the stochastit single-species annihilation process exhibits ¥ decay
of the concentration. This is faster than thé/? decay that arises when only one of the
constituent transport processes in the stochasficocess, either diffusion and deterministic
4+ convection, is present. A microscopic understanding of this decay law is lacking, and
it seems that a technique beyond those typically used to solve one-dimensional reactive
systems would be needed for the stochastannihilation process. Atlong times, the system
exhibits a spatial organization in which diffusion controls the short distance behaviour and
convection controls the large distance behaviour. We have also introduced the concept of
the collision probability, P (n), the probability that a given particle is annihilated by its
nth-neighbour. For the stochastie process, this probability is further discriminated by
annihilation by same-velocity and opposite velocity pairs. These two probabilities decay
as P..(n) ~ n~%2 and P,_(n) ~ n~"/%, respectively. It will be interesting to study
the collision probability in other reaction processes such as diffusive driven single-species
annihilation.
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